Krebsforum Lazarus

Bitte loggen sie sich ein oder registrieren sie sich.

Einloggen mit Benutzername, Passwort und Sitzungslänge
Erweiterte Suche  

Neuigkeiten:

.
[*quote*]
--------------------------------------------
Radiologia & Salud @RX_SALUD 27.4.2017



https://pbs.twimg.com/media/C-Z97-vXYAAAVVK.jpg

#Radiologìa #Veterinaria en #Caballos 🐎

#Veterinary #Radiology in #Horses 🐴
--------------------------------------------
[*/quote*]

more:
https://twitter.com/aribertdeckers/status/861986161555800065

Mäuse haben es leichter ... :-)

Autor Thema: Molekularer Spion gegen Krebs * Molecular Spies to Fight Cancer  (Gelesen 807 mal)

Glückspilz

  • Globaler Moderator
  • Held Mitglied
  • *****
  • Beiträge: 848

[*QUOTE*]
-------------------------------------------------------------------------------------------------
Molekularer Spion gegen Krebs
Verfahren zu verbesserter Tumordiagnose erfolgreich erprobt

Pressemitteilung vom 3. August 2015

Dem Tumor auf der Spur: Die PNA-Antikörper stöbern zunächst die erkrankten Zellen (rot) auf und reichern sich im Tumor an. Im Anschluss binden radioaktiv markierte Sonden (blau) selektiv vor Ort über spezifische Basenpaarungen an die PNA-Antikörper. Mit Hilfe moderner Bildgebungsverfahren können die Forscher den Tumor so visualisieren.




https://www.hzdr.de/db/Cms?pNid=no&pOid=45206

Foto: HZDR/Pfefferkorn
Download
https://www.hzdr.de/db/Cms?pNid=no&pOid=45206

Erstmals konnten Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen der Universität Zürich und der Ruhr-Universität Bochum eine neue Methode für die Tumordiagnose erfolgreich unter realitätsnahen Bedingungen testen. Bei dem Verfahren wird zunächst ein Antikörper als „Spion“ vorausgeschickt, der die erkrankten Zellen aufspürt und an ihnen bindet. Dieser Antikörper zieht wiederum eine radioaktiv markierte Sonde an, die anschließend verabreicht wird. Dadurch konnten die Forscher den Tumor mit einem tomographischen Verfahren deutlich visualisieren. Die Methode könnte in Zukunft die Krebsbehandlung durch innere Bestrahlung verbessern.

Antikörper bildet das menschliche Immunsystem, um sich gegen Krankheitserreger zu verteidigen. Im Labor lassen sich aber auch Antikörper herstellen, die präzise an Tumorzellen binden. Die Krebsforschung setzt sie ein, um bösartige Tumoren zu entdecken und zu bekämpfen. So können Antikörper zum Beispiel als Transportmittel für Radionuklide dienen, mit denen sich die betroffenen Regionen visualisieren oder sogar schädigen lassen. Ein Stolperstein war allerdings bisher ihre große molekulare Masse. „Dadurch zirkulieren sie zu lange im Körper, bevor sie zu den erkrankten Zellen gelangen“, erläutert Dr. Holger Stephan vom Institut für Radiopharmazeutische Krebsforschung am HZDR. „Das hat zum einen den Nachteil, dass auch Organe, die nicht von der Krankheit betroffen sind, Strahlung abbekommen. Und zum anderen erschwert es die genaue Lokalisierung des Tumors im Körper, da die Bildgebung unschärfer wird.“

Gemeinsam mit Kollegen der Universität Zürich und der Ruhr-Universität Bochum wählten die Dresdner Forscher deshalb eine alternative Strategie. „Beim sogenannten Pre-Targeting teilt man die Aufgabe der Antikörper in zwei Schritte“, beschreibt Dr. Kristof Zarschler, der zu Stephans Team gehört, den Prozess. „Im übertragenen Sinn senden wir zuerst Spione voraus, die den Feind – die Tumorzellen – über einen längeren Zeitraum auskundschaften. Deren Position teilen sie danach ihren Truppen, die wir später nachschicken, mit, sodass sie direkt mit den radioaktiven Stoffen dorthin gelangen.“ Als Späher griffen die Forscher auf den Antikörper Cetuximab zurück, der gezielt an den Rezeptor des Epidermalen Wachstumsfaktors (epidermal growth factor receptor, EGFR) bindet. Bei verschiedenen Tumorarten wird dieses Molekül verstärkt gebildet oder liegt in mutierter Form vor, was dazu führt, dass die Zellen unkontrolliert wachsen und sich vermehren.

Deutliche Visualisierung

Den Antikörper kombinierten die Dresdner Forscher mit einem Derivat von Peptid-Nukleinsäuren (PNA), das der Schweizer Professor Gilles Gasser und der deutsche Professor Nils Metzler-Nolte mit ihren Arbeitsgruppen entwickelt hatten. „Es handelt sich dabei um eine sehr stabile, synthetische Variante der DNA“, erläutert Holger Stephan. „Ähnlich wie ein DNA-Einzelstrang ist sie durch ein Grundgerüst aufgebaut, an dem eine Abfolge der vier organischen Basen hängt. Komplementäre PNA mit passendem Gegenstrang bindet daran hochpräzise und stabil.“ Bei ihren Experimenten injizierten die Wissenschaftler tumortragenden Mäusen zunächst den PNA-EGFR-Antikörper und ließen diesem „Spion“ Zeit, um sich am Tumor zu sammeln. Anschließend verabreichten sie das PNA-Gegenstück, das sie mit der radioaktiven Substanz Technetium-99m markierten. „Aufnahmen, die wir mit der Einzelphotonen-Emissions-Computer-Tomographie gemacht haben, zeigen, dass sich die beiden Teile schnell gefunden haben“, freut sich Zarschler über das Ergebnis.

Der Tumor konnte so in kurzer Zeit deutlich visualisiert werden. „Darüber hinaus verschwanden die radioaktiv markierten Sonden schon nach 60 Minuten wieder aus dem Blutkreislauf“, erklärt Holger Stephan. „Das minimiert das Risiko einer Strahlenbelastung für gesundes Gewebe im Körper. Durch das Pre-Targeting können somit die Einschränkungen konventioneller, radioaktiv markierter Antikörper überwunden werden.“ Bis die Kombination aus PNA-Antikörper und passendem PNA-Gegenstück zur Diagnose von Tumoren beim Menschen eingesetzt werden kann, wird nach Ansicht der Forscher allerdings noch einige Zeit vergehen.

„Unsere Resultate zeigen jedoch, dass die untersuchten PNAs geeignete Kandidaten für weitere präklinische Studien sind“, bilanziert Stephan. Letztendlich könnten sich dadurch nicht nur für die Visualisierung der erkrankten Zellen, sondern auch für ihre Bekämpfung neue Möglichkeiten ergeben. „Wenn sich die Methode bewährt, könnten auf diese Weise auch therapeutisch wirksame radioaktive Substanzen zum Tumor transportiert werden, um ihn von innen zu bestrahlen und so zu schädigen.“

Publikation:

A. Leonidova, C. Foerster, K. Zarschler, M. Schubert, H. Pietzsch, J. Steinbach, R. Bergmann, N. Metzler-Nolte, H. Stephan, G. Gasser, „In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system”, in: Chemical Science (2015), DOI: 10.1039/c5sc00951k
http://pubs.rsc.org/en/Content/ArticleLanding/2015/SC/C5SC00951K#!divAbstract

Weitere Informationen:

Dr. Holger Stephan
Institut für Radiopharmazeutische Krebsforschung am HZDR
Tel. +49 351 260-3091 | E-Mail: h.stephan[att]hzdr.de

Prof. Gilles Gasser
Institut für Chemie an der Universität Zürich
Tel. +41 44 63 54630 | E-Mail: gilles.gasser[att]chem.uzh.ch

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt[att]hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
-------------------------------------------------------------------------------------------------
[*/QUOTE*]

mehr:
https://www.hzdr.de/db/Cms?pNid=99&pOid=45202


[*QUOTE*]
-------------------------------------------------------------------------------------------------
Molecular Spies to Fight Cancer
Procedure for improving tumor diagnosis successfully tested

Press release of August 3, 2015

Tracking the tumor: PNA-antibodies detect initially the diseased cells (red) and accumulate at the tumor site. Afterwards the radioactively labeled probes (blue) selectively bind to them by specific base pairing. Modern imaging methods allow the scientists thus to visualize the tumor.



https://www.hzdr.de/db/Cms?pNid=no&pOid=45206

Foto: HZDR/Pfefferkorn
Download
https://www.hzdr.de/db/Cms?pNid=no&pOid=45206

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in cooperation with colleagues at the University of Zurich and the Ruhr-Universität Bochum, have for the first time successfully tested a new tumor diagnosis method under near-real conditions. The new method first sends out an antibody as a "spy" to detect the diseased cells and then binds to them. This antibody in turn attracts a subsequently administered radioactively labeled probe. The scientists could then clearly visualize the tumor by utilizing a tomographic method. This procedure could improve cancer treatment in the future by using internal radiation.

The human immune system forms antibodies that protect the body from pathogens. Antibodies can also, however, be produced in a laboratory to precisely bind to tumor cells. They are used in cancer research to detect and fight malignant tumors. For example, antibodies can serve as transport vehicles for radionuclides, with which the affected regions can be visualized or can even be damaged. Until recently, a stumbling block has been their large molecular mass. “This causes them to circulate in the body for too long before they reach the diseased cells,” explains Dr Holger Stephan from the Institute of Radiopharmaceutical Cancer Research at HZDR. "This is a disadvantage because organs that are not affected by the disease are exposed to radiation. It also makes the exact localization of the tumor in the body more difficult because the resulting images are less sharp.”

Together with colleagues at the University of Zurich and the Ruhr-Universität Bochum, the researchers from Dresden therefore chose an alternative strategy. “By using what is known as ‘pre-targeting’, the antibodies’ task is divided into two steps,” Dr Kristof Zarschler, a member of Stephan's team, explains. “In a figurative sense, we first send spies out in advance, over a longer period of time, to scout out the enemy – the tumor cells. The ‘spies’ then share their position with their troops, which we subsequently send out so that they will directly reach their target with the radioactive material.” The researchers fall back on the cetuximab antibody as the scout, which binds selectively to the epidermal growth factor receptor (EGFR). In various types of tumors, there is an increase in this molecule’s formation or it might be found in a mutated form, which then leads the cells to grow and multiply uncontrolled.

Clear Visualization

The Dresden researchers combined the antibody with a peptide nucleic acid (PNA) derivative which Prof Gilles Gasser and Prof Nils Metzler-Nolte developed together with their respective working groups in Switzerland and Germany. “It is a very stable synthetic variant of DNA," says Holger Stephan. “Similar to a single strand of DNA, it consists of a certain sequence of the four organic bases. Complementary PNA with matching sequence binds to it in a highly precise and stable manner.” During their experiments, the scientists first injected the PNA-EGFR antibody into tumor-bearing mice and gave this “spy” time to accumulate at the tumor site. They then administered the PNA counterpart, labeled with the radioactive substance technetium-99m. “Images we took using single photon emission computed tomography show that both the antibody and its counterpart located each other quickly,” says Zarschler, pleased with the results.

The tumor could thus be clearly visualized within a short period of time. “Furthermore, the radioactively labeled probes had already disappeared from the bloodstream after sixty minutes,” explains Holger Stephan. “This minimizes radioactive exposure risk of healthy body tissue. By pre-targeting, we can overcome limitations of conventional, radioactively marked antibodies.” According to the researchers, it will, however, take some time before the combination of PNA antibodies and their matching PNA counterparts can be used in diagnosing tumors in humans.

“Our results however show that the PNAs we tested are suitable candidates for further preclinical studies,” Stephan sums up. They could provide new possibilities not only for visualizing diseased cells but also for fighting them. “If the method is proven to work, it could also be used to transport therapeutically effective radioactive substances to the tumor in order to irradiate it from within and ultimately damage it.”

Publication:

A. Leonidova, C. Foerster, K. Zarschler, M. Schubert, H. Pietzsch, J. Steinbach, R. Bergmann, N. Metzler-Nolte, H. Stephan, G. Gasser, „In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system”, in: Chemical Science (2015), DOI: 10.1039/c5sc00951k
http://pubs.rsc.org/en/Content/ArticleLanding/2015/SC/C5SC00951K#!divAbstract

Further Information:

Dr. Holger Stephan
Institute of Radiopharmaceutical Cancer Research at HZDR
Phone +49 351 260-3091 | E-Mail: h.stephan[att]hzdr.de

Prof. Gilles Gasser
Department of Chemistry at the University of Zurich
Phone +41 44 63 54630 | E-Mail: gilles.gasser[att]chem.uzh.ch

Media Contact:

Simon Schmitt | Science editor
Phone +49 351 260-3400 | E-Mail: s.schmitt[att]hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
-------------------------------------------------------------------------------------------------
[*/QUOTE*]

more:
https://www.hzdr.de/db/Cms?pNid=99&pOid=45202
« Letzte Änderung: 08. August 2015, 11:31:30 von Glückspilz »
Gespeichert
Würde ich von Licht leben,
müßte ich grün sein.